Mathematical Foundations

Steve Borgatti

Revised 7/04 in Colchester, U.K.
Graphs

- Networks represented mathematically as graphs
- A graph $G(V,E)$ consists of …
 - Set of nodes/vertices V representing actors
 - Set of lines/edges E representing ties
 - An edge is an unordered pair of nodes (u,v)
 - Nodes u and v adjacent if $(u,v) \in E$
 - So E is subset of set of all pairs of nodes
- Typically drawn without arrow heads
Digraphs

- Digraph $D(V,E)$ consists of …
 - Set of nodes V
 - Set of directed arcs E
 - An arc is an ordered pair of nodes (u,v)
 - $(u,v) \in E$ indicates u sends arc to v
 - $(u,v) \in E$ does not imply that $(v,u) \in E$
- Ties drawn with arrow heads, which can be in both directions
Directed vs undirected graphs

- Undirected relations
 - Attended meeting with
 - Communicates daily with
- Directed relations
 - Lent money to
- Logically vs empirically directed ties
 - Empirically, even undirected relations can be non-symmetric due to measurement error
Strength of Tie

- We can attach values to ties, representing quantitative attributes
 - Strength of relationship
 - Information capacity of tie
 - Rates of flow or traffic across tie
 - Distances between nodes
 - Probabilities of passing on information
 - Frequency of interaction

- Valued graphs or vigraphs
Adjacency Matrices

Friendship

<table>
<thead>
<tr>
<th></th>
<th>Jim</th>
<th>Jill</th>
<th>Jen</th>
<th>Joe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Jill</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jen</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Joe</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Proximity

<table>
<thead>
<tr>
<th></th>
<th>Jim</th>
<th>Jill</th>
<th>Jen</th>
<th>Joe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Jill</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Jen</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Joe</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
Density

- Number of ties, expressed as percentage of the number of ordered/unordered pairs

Low Density (25%)
Avg. Dist. = 2.27

High Density (39%)
Avg. Dist. = 1.76
Help With the Rice Harvest

Village 1

Data from Entwistle et al
Help With the Rice Harvest

Which village is more likely to survive?

Village 2

Data from Entwistle et al
Degree

- Number of edges incident upon a vertex
 - \(d_8 = 6\), while \(d_{10} = 1\)
- Sum of degrees of all nodes is twice the number of edges in graph
- Average degree = density times \((n-1)\)
InDegree & OutDegree
(Directed graphs only)

- **Indegree** is number of arcs that terminate at the node (incoming ties)
 - \(\text{Indeg}(\text{biff}) = 3 \)

- **Outdegree** is number of arcs that originate at the node (outgoing ties)
 - \(\text{Outdeg}(\text{biff}) = 1 \)

Average indegree always equals average outdegree
Walks, Trails, Paths

- **Path**: can’t repeat node
 - 1-2-3-4-5-6-7-8
 - Not 7-1-2-3-7-4
- **Trail**: can’t repeat line
 - 1-2-3-1-7-8
 - Not 7-1-2-7-1-4
- **Walk**: unrestricted
 - 1-2-3-1-2-7-1-7-1
Length & Distance

• Length of a path is number of links it has
• Distance between two nodes is length of shortest path (aka geodesic)
Geodesic Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Robert Wagner

Austin Powers: The spy who shagged me

Let’s make it legal

Wild Things

What Price Glory

Barry Norton

A Few Good Man

Monsieur Verdoux
Diameter

• Maximum distance

Diameter = 3
Average Distance

- Average geodesic distance between all pairs of nodes

- Core/Periphery
 c/p fit = 0.97, avg. dist. = 1.9

- Clique structure
 c/p fit = 0.33, avg. dist. = 2.4
Types of Flow Processes

- Gift process
- Currency process
- Transport process
- Postal process
- Gossip process
- E-mail process
- Infection process
- Influence process

(several others)
Monetary Exchange Process

• Canonical example:
 – specific dollar bill moving through the economy
• Single object in only one place at a time
• Can travel between same pair more than once
 • A--B--C--B--C--D--E--B--C--B--C ...
Gossip Process

• Example:
 – juicy story moving through informal network
• Multiple copies exist simultaneously
• Person tells only one person at a time*
• Doesn’t travel between same pair twice
• Can reach same person multiple times

* More generally, they tell a very limited number at a time.
Infection Process

• Example:
 – virus which activates effective immunological response

• Multiple copies may exist simultaneously

• Cannot revisit a node
 • A--B--C--E--D--F...
Three Kinds of Flows

<table>
<thead>
<tr>
<th>Type of Flow</th>
<th>Type of Trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>Path</td>
</tr>
<tr>
<td>Gossip</td>
<td>Trail</td>
</tr>
<tr>
<td>Dollar bill</td>
<td>Walk</td>
</tr>
</tbody>
</table>
Typology

<table>
<thead>
<tr>
<th></th>
<th>parallel duplication</th>
<th>serial duplication</th>
<th>transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>geodesics</td>
<td></td>
<td></td>
<td>delivery</td>
</tr>
<tr>
<td>paths</td>
<td>nameserver</td>
<td>infection</td>
<td>moocher</td>
</tr>
<tr>
<td>trails</td>
<td>sending e-mail</td>
<td>gossiping</td>
<td>hand-me-down</td>
</tr>
<tr>
<td>walks</td>
<td>influence</td>
<td></td>
<td>monetary exchange</td>
</tr>
</tbody>
</table>
Components

- Maximal sets of nodes in which every node can reach every other by some path (no matter how long)
- A connected graph has just one component

It is relations (types of tie) that define different networks, not components. A graph that has two components remains one (disconnected) graph.
A network with 4 components

Who you go to so that you can say ‘I ran it by ____, and she says ...’

Data drawn from Cross, Borgatti & Parker 2001.
Transitivity

- Number of triples with 3 ties expressed as a proportion of triples with 2 or more ties
 - Aka the clustering coefficient

\[
\begin{align*}
&\{C,T,E\} \text{ is a transitive triple, but } \{B,C,D\} \text{ is not} \\
&cc = 2/6 = 33%
\end{align*}
\]
Independent Paths

• A set of paths is node-independent if they share no nodes (except beginning and end)
 – They are line-independent if they share no lines

S • 2 node-independent paths from *S* to *T*
• 3 line-independent paths from *S* to *T*
Connectivity

- Line connectivity $\lambda(s,t)$ is the minimum number of lines that must be removed to disconnect s from t

- Node connectivity $\kappa(s,t)$ is minimum number of nodes that must be removed to disconnect s from t
Menger’s Theorem

• Menger proved that the number of line independent paths between s and t equals the line connectivity $\lambda(s,t)$
• And the number of node-independent paths between s and t equals the node connectivity $\kappa(u,v)$
Maximum Flow

- If ties are pipes with capacity of 1 unit of flow, what is the maximum # of units that can flow from s to t?
- Ford & Fulkerson show this was equal to the number of line-independent paths
Cutpoint

- A node which, if deleted, would increase the number of components
Bridge

- A tie that, if removed, would increase the number of components
Local Bridge of Degree K

• A tie that connects nodes that would otherwise be at least k steps apart
Granovetter Transitivity
Granovetter’s SWT Theory

• Strong ties create transitivity
 – Two nodes connected by a strong tie will have mutual acquaintances (ties to same 3rd parties)

• Ties that are part of transitive triples cannot be bridges or local bridges

• Therefore, only weak ties can be bridges
 – Hence the value of weak ties
Granovetter’s SWT

• Strong ties are embedded in tight homophilous clusters,
• Weak ties connect to diversity
• Weak ties a source of novel information